This page shows a psychometric process for a typical 100% outdoor air energy recovery unit under standard design conditions. The numbers indicate different stages in the process where there is a transformation of the incoming air condition. The energy saving is compared to the energy needed to achieve the same supply conditions with a basic heating and/or cooling makeup air unit.

Winter Operation
Plate effectiveness 62%
The fixed plate pre-conditions the air entering the heating coil by heating it. The air entering the heating coil is at a closer temperature to the desired room air, thereby reducing the amount of mechanical heating needed. As a result the heating coil can be downsized compared to a no-recovery process.

1 - 2 pre-heat section
\[Q_h = 1.08 \times 1000 \times (95 - 45) = 37.8 \text{ mbh (1.5 tons)} \]

2 - 3 mechanical heating section
\[Q_h = 1.08 \times 1000 \times (45 - 10) = 54.0 \text{ mbh (5.3 tons)} \]

Summer Operation
Plate effectiveness 65%
The fixed plate pre-conditions the air reaching the cooling coil by cooling it. The air entering the cooling coil is at a closer temperature to the desired room air, thereby requiring less mechanical cooling. As a result the cooling coil can be downsized compared to a no-recovery process.

1 - 2 pre-cool section
\[Q_c = 4.5 \times 1000 \times (41.4 - 37.4) = 18 \text{ mbh (1.5 tons)} \]

2 - 3 mechanical cooling section
\[Q_c = 4.5 \times 1000 \times (37.4 - 23.2) = 63.9 \text{ mbh (5.3 tons)} \]

Savings gained by energy recovery

<table>
<thead>
<tr>
<th></th>
<th>cooling</th>
<th>heating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5 tons/1000 cfm</td>
<td>37.8 mbh/1000 cfm</td>
</tr>
</tbody>
</table>

Energy required without energy recovery

<table>
<thead>
<tr>
<th></th>
<th>cooling</th>
<th>reheat</th>
<th>heating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.8 tons/1000 cfm</td>
<td>16.2 mbh</td>
<td>91.8 mbh/1000 cfm</td>
</tr>
</tbody>
</table>